Develop A Potential Recombinant Protein Vaccine in E.Coli

Expression and Purification of an Engineered, E. coli-expressed Leishmania donovani Nucleoside Hydrolase with Immunogenic Properties
Potential recombinant protein vaccine candidates must meet several criteria:

They must be expressed at sufficiently high levels in the organism of choice
They must be purified to high purity from the expression system in an immunogenic form
They must induce potent immune responses
Dr. Patrick McAtee will take you through these vaccine development steps using the nucleoside hydrolase antigen from Leishmania donovani as an example. He will demonstrate how his lab cloned and expressed the full-length, 36-dKa protein. He will discuss purification of the protein to >99% purity using anion exchange and gel filtration chromatography. He will also talk about the steps taken to ensure protein integrity and enzymatic activity using lithium dodecyl sulfate polyacrylamide gel electrophoresis (LDS-PAGE), mass spectrometry (MS), and enzymatic assays.

Dr. McAtee will then take you through in vivo testing of the vaccine candidate including analyzing antibody levels from mice immunized with the protein alone or in a stable emulsion with glucopyranosyl lipid adjuvant (GLA-SE). He will describe characterization of the type of cellular immune response induced by the protein. Finally, he will demonstrate protective efficacy in mice challenged with Leishmania mexicana.

Creators and Guests

Karen O'Hanlon Cohrt
Host
Karen O'Hanlon Cohrt
Editor in Chief, CRISPR Medicine News
Develop A Potential Recombinant Protein Vaccine in E.Coli