Discovering PARP inhibitor resistance with CRISPR

In this webinar, Dr. Stephen Pettitt explains how he applies genome-wide targeted mutagenesis screens to elucidate the genetic basis of drug resistance. Using mouse and breast cancer cell lines, Dr. Pettitt’s team developed a targeted, genome-wide mutagenesis screen to identify mutations responsible for resistance to the potent PARP inhibitor talazoparib (BMN 673). The screen yielded one particularly interesting point mutation in the PARP1 gene. This mutation disrupted the ability of PARP1 to bind DNA, demonstrating that DNA binding is necessary for the action of talazoparib. Dr. Pettitt will describe how he then employed a high-density, focused sgRNA library targeting PARP1 to generate further mutants that he used to elucidate details of the structure-function relationships of PARP1. This research is not only important for unravelling the mechanisms underlying drug resistance, but it may improve future treatment plans for cancer patients.

In this webinar, you will learn:

– How to use genome-wide CRISPR screening for mutant discovery
– How to create a highly diverse, sgRNA library from Twist Bioscience for targeted, subtle mutations
– How knowledge of the structure-function relationships of PARP1 mutants can inform treatment of cancer patients with these drugs

Creators and Guests

Amanda Welch
Host
Amanda Welch
Science Editor and Writer, AtKisson Training Group
Stephen Pettitt
Guest
Stephen Pettitt
Senior Staff Scientist at The Institute of Cancer Research
Discovering PARP inhibitor resistance with CRISPR